مدل سازی پیش بینی گردشگری ورودی به ایران با استفاده از روش هایarima و شبکه های عصبی فازی

Authors

محمدرضا فرزین

امیر افسر

تقی اکبر پور

علی اکبرپور

abstract

صنعت گردشگری به عنوان یک صنعت پاک و اشتغالزا، در سال‎های اخیر جزء درآمدزاترین صنایع جهان بوده و همواره مورد توجه سیاست‎ها و برنامه‎های توسعه گرانه می‎باشد. دولت‎ها و بخش‎های خصوصی در سطوح کلان تا خرد جهت توسعه و بقاء در بخش گردشگری نیازمند پیش‎بینی تقاضا در این بخش می‎باشند. هر چند که اکثر مطالعات انجام گرفته جهت پیش‎بینی تقاضا در گردشگری از روش‎های کمی استفاده کرده‎اند ولی رویکردها و روش‎های کمی و کیفی گوناگونی برای این امر پیشنهاد و استفاده شده‎اند. در مطالعات پیشین به ویژه با توجه به معرفی نسبتا جدید رویکردهای شبکه‎های عصبی و شبکه‎های عصبی فازی، روش‎های هوش مصنوعی، کمتر در پیش‎بینی در بخش گردشگری مورد استفاده قرار گرفته اند.مطالعه حاضر قصد دارد میزان تقاضای گردشگری ورودی به ایران را از طریق مدل پیشنهادی شبکه‎های عصبی فازی پیش‎بینی کند و صحت و دقت عملکرد این روش را با روش ‎arima مقایسه کند. این مطالعه پس از تعیین و اولویت بندی مهمترین عوامل تاثیرگذار بر تابع تقاضای گردشگری ورودی به ایران و تعیین معماری شبکه‎های عصبی فازی به این نتیجه دست یافت که در تمامی معیارهای ارزیابی عملکرد پیش‎بینی، روش مدل شبکه‎های عصبی فازی بر arima برتری دارد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مدل سازی پیش بینی گردشگری ورودی به ایران با استفاده از روش هایARIMA و شبکه های عصبی فازی

صنعت گردشگری به عنوان یک صنعت پاک و اشتغالزا، در سال‎های اخیر جزء درآمدزاترین صنایع جهان بوده و همواره مورد توجه سیاست‎ها و برنامه‎های توسعه گرانه می‎باشد. دولت‎ها و بخش‎های خصوصی در سطوح کلان تا خرد جهت توسعه و بقاء در بخش گردشگری نیازمند پیش‎بینی تقاضا در این بخش می‎باشند. هر چند که اکثر مطالعات انجام گرفته جهت پیش‎بینی تقاضا در گردشگری از روش‎های کمی استفاده کرده‎اند ولی رویکردها و روش‎های ک...

full text

مدل سازی و پیش بینی کارایی بانک های دولتی و خصوصی ایران با استفاده از مدل های شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک

دستیابی به رشد مستمر و مداوم اقتصادی و به موجب آن توسعه اقتصادی را می توان از زمره اهدافی قلمداد نمود که تمام کشورها در پی دستیابی به آن می باشند. در این راستا بانک ها نقش بسیار مهمی در پیشرفت و توسعه اقتصادی هر کشور ایفا می نمایند. در حال حاضر با توجه به تعداد قابل توجه بانک های دولتی و خصوصی در کشور پیش بینی کارایی آن ها اهمیت ویژه ای پیدا کرده است. هدف از این پژوهش، مدلسازی و پیش بینی کارایی...

full text

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

استفاده از مدل های سری زمانی، شبکه عصبی و ماشین بردار پشتیبان جهت پیش بینی دبی ورودی به سد گرگان

پیش­بینی مقادیر جریان ورودی به سیستم منابع آب به­منظور آگاهی از شرایط آینده و برنامه­ریزی برای تخصیص بهینه منابع آب به بخش­های مختلف از قبیل شرب، کشاورزی و صنعتی امری ضروری در مدیریت منابع آب می­باشد. هدف از پژوهش حاضر پیش­بینی مقادیر دبی ماهانه ورودی به سد گرگان برای آینده بود. بدین منظور از داده­های هیدرومتری ایستگاه قزاقلی با دوره­ آماری 47 سال و سه مدل سری­زمانی، شبکه عصبی و ماشین بردار پشت...

full text

پیش بینی قیمت سهام با استفاده از شبکه عصبی فازی مبتنی برالگوریتم ژنتیک و مقایسه با شبکه عصبی فازی

In capital markets, stock price forecasting is affected by variety of factors such as political and economic condition and behavior of investors. Determining all effective factors and level of their effectiveness on stock market is very challenging even with technical and knowledge-based analysis by experts. Hence, investors have encountered challenge, doubt and fault in order to invest with mi...

full text

استفاده از رهیافت های شبکه عصبی و مدل های خودرگرسیونی در پیش بینی رشد اقتصادی ایران

یکی از مسائل مهم در اقتصاد پیش بینی رشد اقتصادی می باشد که با توجه به اینکه، پیش بینی صحیح رشد اقتصادی، آثار مهمی در سیاست گذاری و برنامه ریزی های اقتصادی دولت دارد و می تواند علاوه بر ایجاد زمینه‌ی توسعه روش های جدید پیش بینی، سیاست گذاران را در تصمیم گیری آتی یاری رساند، لذا هدف این مقاله پیش بینی رشد اقتصادی ایران با استفاده از سه مدل شبکه عصبی، میانگین متحرک خودرگرسیون تجمعی، خودرگرسیون وار...

full text

My Resources

Save resource for easier access later


Journal title:
مطالعات مدیریت گردشگری

Publisher: دانشگاه علامه طباطبایی

ISSN 2322-3294

volume 8

issue 24 2014

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023